63 research outputs found

    Preliminary definitions for the sonographic features of synovitis in children

    Get PDF
    Objectives Musculoskeletal ultrasonography (US) has the potential to be an important tool in the assessment of disease activity in childhood arthritides. To assess pathology, clear definitions for synovitis need to be developed first. The aim of this study was to develop and validate these definitions through an international consensus process. Methods The decision on which US techniques to use, the components to be included in the definitions as well as the final wording were developed by 31 ultrasound experts in a consensus process. A Likert scale of 1-5 with 1 indicating complete disagreement and 5 complete agreement was used. A minimum of 80% of the experts scoring 4 or 5 was required for final approval. The definitions were then validated on 120 standardized US images of the wrist, MCP and tibiotalar joints displaying various degrees of synovitis at various ages. Results B-Mode and Doppler should be used for assessing synovitis in children. A US definition of the various components (i.e. synovial hypertrophy, effusion and Doppler signal within the synovium) was developed. The definition was validated on still images with a median of 89% (range 80-100) of participants scoring it as 4 or 5 on a Likert scale. Conclusions US definitions of synovitis and its elementary components covering the entire pediatric age range were successfully developed through a Delphi process and validated in a web-based still images exercise. These results provide the basis for the standardized US assessment of synovitis in clinical practice and research

    On Low-Energy Effective Actions in N = 2, 4 Superconformal Theories in Four Dimensions

    Get PDF
    We study some aspects of low-energy effective actions in 4-d superconformal gauge theories on the Coulomb branch. We describe superconformal invariants constructed in terms of N=2 abelian vector multiplet which play the role of building blocks for the N=2,4 supersymmetric low-energy effective actions. We compute the one-loop effective actions in constant N=2 field strength background in N=4 SYM theory and in N=2 SU(2) SYM theory with four hypermultiplets in fundamental representation. Using the classification of superconformal invariants we then find the manifestly N=2 superconformal form of these effective actions. While our explicit computations are done in the one-loop approximation, our conclusions about the structure of the effective actions in N=2 superconformal theories are general. We comment on some applications to supergravity - gauge theory duality in the description of D-brane interactions.Comment: 18 pages, latex, comments/reference adde

    The ηgg\eta^\prime g^* g^* vertex with arbitrary gluon virtualities in the perturbative QCD hard scattering approach

    Full text link
    We study the ηgg\eta^\prime g^* g^* vertex for arbitrary gluon virtualities in the time-like and space-like regions, using the perturbative QCD hard scattering approach and an input wave-function of the η\eta^\prime-meson consistent with the measured ηγγ\eta^\prime \gamma^* \gamma transition form factor. The contribution of the gluonic content of the η\eta^\prime-meson is taken into account, enhancing the form factor over the entire virtuality considered. However, data on the electromagnetic transition form factor of the η\eta^\prime-meson is not sufficient to quantify the gluonic enhancement. We also study the effect of the transverse momenta of the partons in the η\eta^\prime-meson on the ηgg\eta^\prime g^* g^* vertex, using the modified hard scattering approach based on Sudakov formalism. Analytic expressions for the ηgg\eta^\prime g^* g^* vertex are presented in limiting kinematic regions and parametrizations are given satisfying the QCD anomaly, for real gluons, and perturbative QCD behavior for large gluon virtualities, in both the time-like and space-like regions. Our results have implications for the inclusive decay BηXB \to \eta^\prime X and exclusive decays, such as Bη(K,K)B \to \eta^\prime (K,K^*), and in hadronic production processes N+N(Nˉ)ηXN + N (\bar N) \to \eta^\prime X.Comment: 23 pages, 19 figures (requires revtex4, amssymb, epsf); several typos corrected, this version now identical to the one accepted for publication in Phys. Rev.

    Exclusive Radiative B-Decays in the Light-Cone QCD Sum Rule Approach

    Get PDF
    We carry out a detailed study of exclusive radiative rare BB-decays in the framework of the QCD sum rules on the light cone, which combines the traditional QCD sum rule technique with the description of final state vector mesons in terms of the light-cone wave functions of increasing twist. The decays considered are: Bu,dK+γ,Bu,dρ+γ,Bdω+γB_{u,d} \to K^* +\gamma, B_{u,d}\to \rho+\gamma, B_d\to \omega+\gamma and the corresponding decays of the BsB_s mesons, Bsϕ+γB_s\to \phi+\gamma and BsK+γB_s\to K^*+\gamma. Based on our estimate of the transition form factor F_1^{B \to K^*\pg}(0) =0.32\pm0.05, we find for the branching ratio BR(BK+γ)=(4.8±1.5)×105BR(B \to K^* + \gamma) = (4.8\pm 1.5)\times 10^{-5}, which is in agreement with the observed value measured by the CLEO collaboration. We present detailed estimates for the ratios of the radiative decay form factors, which are then used to predict the rates for the exclusive radiative B-decays listed above. This in principle allows the extraction of the CKM matrix element Vtd|V_{td}| from the penguin-dominated CKM-suppressed radiative decays when they are measured. We give a detailed discussion of the dependence of the form factors on the bb-quark mass and on the momentum transfer, as well as their interrelation with the CKM-suppressed semileptonic decay form factors in Bρ++νB\to \rho+\ell+\nu, which we also calculate in our approach.Comment: 32 pages, 10 uuencoded figures, LaTeX, preprint CERN-TH 7118/9

    Effective action of three-dimensional extended supersymmetric matter on gauge superfield background

    Full text link
    We study the low-energy effective actions for gauge superfields induced by quantum N=2 and N=4 supersymmetric matter fields in three-dimensional Minkowski space. Analyzing the superconformal invariants in the N=2 superspace we propose a general form of the N=2 gauge invariant and superconformal effective action. The leading terms in this action are fixed by the symmetry up to the coefficients while the higher order terms with respect to the Maxwell field strength are found up to one arbitrary function of quasi-primary N=2 superfields constructed from the superfield strength and its covariant spinor derivatives. Then we find this function and the coefficients by direct quantum computations in the N=2 superspace. The effective action of N=4 gauge multiplet is obtained by generalizing the N=2 effective action.Comment: 1+27 pages; v2: minor corrections, references adde

    Superconformal operators in N=4 super-Yang-Mills theory

    Full text link
    We construct, in the framework of the N=4 SYM theory, a supermultiplet of twist-two conformal operators and study their renormalization properties. The components of the supermultiplet have the same anomalous dimension and enter as building blocks into multi-particle quasipartonic operators. The latter are determined by the condition that their twist equals the number of elementary constituent fields from which they are built. A unique feature of the N=4 SYM is that all quasipartonic operators with different SU(4) quantum numbers fall into a single supermultiplet. Among them there is a subsector of the operators of maximal helicity, which has been known to be integrable in the multi-color limit in QCD, independent of the presence of supersymmetry. In the N=4 SYM theory, this symmetry is extended to the whole supermultiplet of quasipartonic operators and the one-loop dilatation operator coincides with a Hamiltonian of integrable SL(2|4) Heisenberg spin chain.Comment: 45 pages, Latex, 4 figure

    Angular distributions in hard exclusive production of pion pairs

    Full text link
    Using the leading order amplitudes of hard exclusive electroproduction of pion pairs we have analyzed the angular distribution of the two produced particles. At leading twist a pion pair can be produced only in an isovector or an isoscalar state. We show that certain components of the angular distribution only get contributions from the interference of the I=1 and the (much smaller) I=0 amplitude. Therefore our predictions prove to be a good probe of isospin zero pion pair production. We predict effects of a measurable size that could be observed at experiments like HERMES. We also discuss how hard exclusive pion pair production can provide us with new information on the effective chiral Lagrangian.Comment: 17 pages, version to appear in Phys. Rev.

    Parton interactions in the Bjorken limit of QCD

    Get PDF
    We consider the Bjorken limit in the framework of the effective action approach and discuss its similarities to the Regge limit. The proposed effective action allows for a rather simple calculation of the known evolution kernels. We represent the result in terms of two-parton interaction operators involving gluon and quark operators depending on light-ray position and helicity and analyze their symmetry properties.Comment: 32 pages LaTex, 4 eps-figures, comments added, minor correction

    Next-to-next-to-leading order prediction for the photon-to-pion transition form factor

    Get PDF
    We evaluate the next-to-next-to-leading order corrections to the hard-scattering amplitude of the photon-to-pion transition form factor. Our approach is based on the predictive power of the conformal operator product expansion, which is valid for a vanishing β\beta-function in the so-called conformal scheme. The Wilson--coefficients appearing in the non-forward kinematics are then entirely determined from those of the polarized deep-inelastic scattering known to next-to-next-to-leading accuracy. We propose different schemes to include explicitly also the conformal symmetry breaking term proportional to the β\beta-function, and discuss numerical predictions calculated in different kinematical regions. It is demonstrated that the photon-to-pion transition form factor can provide a fundamental testing ground for our QCD understanding of exclusive reactions.Comment: 62 pages LaTeX, 2 figures, 9 tables; typos corrected, some references added, to appear in Phys. Rev.

    Integrability in QCD and beyond

    Full text link
    Yang--Mills theories in four space-time dimensions possess a hidden symmetry which does not exhibit itself as a symmetry of classical Lagrangians but is only revealed on the quantum level. It turns out that the effective Yang--Mills dynamics in several important limits is described by completely integrable systems that prove to be related to the celebrated Heisenberg spin chain and its generalizations. In this review we explain the general phenomenon of complete integrability and its realization in several different situations. As a prime example, we consider in some detail the scale dependence of composite (Wilson) operators in QCD and super-Yang--Mills (SYM) theories. High-energy (Regge) behavior of scattering amplitudes in QCD is also discussed and provides one with another realization of the same phenomenon that differs, however, from the first example in essential details. As the third example, we address the low-energy effective action in a N=2 SYM theory which, contrary to the previous two cases, corresponds to a classical integrable model. Finally, we include a short overview of recent attempts to use gauge/string duality in order to relate integrability of Yang--Mills dynamics with the hidden symmetry of a string theory on a curved background.Comment: 87 pages, 4 figures; minor stylistic changes, references added. To be published in the memorial volume 'From Fields to Strings: Circumnavigating Theoretical Phyiscs', World Scientific, 2004. Dedicated to the memory of Ian Koga
    corecore